Chapter 6: The Operational Amplifier

ECE 2040

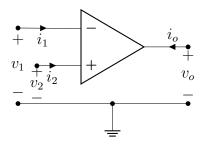


Figure 1. The Operational Amplifier, with inputs/outputs labeled.

• Linear Op Amp: Op-amps whose inputs/outputs satisfy the below three conditions:

$$|v_{o}| \leq v_{sat}$$

$$|i_{o}| \leq i_{sat}$$

$$\left| \frac{\mathrm{d}v_{o}(t)}{\mathrm{d}t} \right| \leq \mathrm{SR}$$

where,

- $-v_{sat} = \text{saturation voltage}$
- $-i_{sat} = \text{saturation current}$
- -SR = slew rate limit

• Ideal Op Amp: A linear operational amplifier that meets the following conditions:

- 1. $i_1 = 0$
- 2. $i_2 = 0$
- 3. $v_1 = v_2$

Note that v_1 and v_2 are not shorted. Also, i_o is not necessarily 0 V.

Applying NVA on an Op-Amp

- Using the property $v_1 = v_2$, eliminate one of the node voltage equations
- Exploit the property $i_1 = i_2 = 0$ by using KCL at the input nodes of the op amp.
- Since $i_0 \neq 0$, do not apply KCL at this node doing so will add an unknown.